

Knowledge Management: Overview and Related Fields

Acknowledgement: NSF DLI2, NIH/NLM, NCSA

美國亞歷桑那大學, 陳炘鈞 博士

Hsinchun Chen, Ph.D.

McClelland Professor,

Director, Artificial Intelligence Lab and Hoffman eCommerce Lab

The University of Arizona CEO, Knowledge Computing Corporation

- My Background: (A Mixed Bag!)
 - BS NCTU Management Science, 1981
 - MBA SUNY Buffalo Finance, MS, MIS
 - Ph.D. NYU Information System, Minor: CS
 - Dissertation: "An Al Approach to the Design Of Online Information Retrieval Systems" (GEAC Online Cataloging System)
 - Associate/ Assistant/Full/Chair Professor, University of Arizona, MIS Department

My Background: (A Mixed Bag!)

- Founder, Artificial Intelligent Lab, 1990
- Founder, Hoffman eCommerce Lab, 2000
- PIs: NSF CISE DLI-1 DLI-2, DARPA, NIJ, NIH
- Editors: JASIST, DSS
- Conference Chairs: ADL1, ADL2, ADL3, ADL4
- Industry Consulting: HP, IBM, AT&T, SGI, Microsoft, SAP
- Founder, Knowledge Computing Corporation, 2000

Artificial Intelligence Lab cona The University of Arizona The Univers

Knowledge Management: Overview

Knowledge Management Overview

- What is Knowledge Management
- Data, Information, and Knowledge
- Why Knowledge Management?
- Knowledge Management Processes

Unit of Analysis

- Data: 1980s
 - Factual
 - Structured, numeric Oracle, Sybase, DB2
- Information: 1990s
 - Factual
 - Unstructured, textual

Yahoo!, Excalibur,

Verity, Documentum

- Knowledge: 2000s
 - Inferential, sensemaking, decision making
 - Multimedia

???

Data, Information and Knowledge:

- According to Alter (1996), Tobin (1996), and Beckman (1999):
 - Data: Facts, images, or sounds (+interpretation+meaning =)
 - Information: Formatted, filtered, and summarized data (+action+application =)
 - Knowledge: Instincts, ideas, rules, and procedures that guide actions and decisions

Application and Societal Relevance:

- Ontologies, hierarchies, and subject headings
- Knowledge management systems and practices: knowledge maps
- Digital libraries, search engines, web mining, text mining, data mining, CRM, eCommerce
- Semantic web, multilingual web, multimedia web, and wireless web

Artificial Intelligence 2010 The Third Wave of Net Evolution **ARPANET** "Semantic Web" Internet **Function** Server Access Info Access Knowledge Access 1995 File/Homepage Concepts Unit Server 1975 2000 **Email** WWW: "World Wide Wait" **Example Concept Protocols** 1985 1965

Microsoft/Netscape

Company

IBM

???

Artificial Intelligence Lab

ona The University of Arizona The University of Arizona The University of Arizona The University

Knowledge Management Definition

"The system and managerial approach to collecting, processing, and organizing enterprise-specific knowledge assets for business functions and decision making."

Knowledge Management Challenges

- "... making high-value corporate information and knowledge easily available to support decision making at the lowest, broadest possible levels ..."
 - Personnel Turn-over
 - Organizational Resistance
 - Manual Top-down Knowledge Creation
 - Information Overload

Knowledge Management Landscape

- Research Community
 - NSF / DARPA / NASA, Digital Library Initiative I & II (\$80M)
 - NSF, Digital Government Initiative (\$60M)
 - NSF, Knowledge Networking Initiative (\$50M)
 - NSF, Information Technology Research (\$120M)
- Business Community
 - Intellectual Capital, Corporate Memory,
 - Knowledge Chain, Competitive Intelligence

Knowledge Management Foundations

- Enabling Technologies:
 - Information Retrieval (Excalibur, Verity, Oracle Context)
 - Electronic Document Management (Documentum, PC DOCS)
 - Internet/Intranet (Yahoo!, Excite)
 - Groupware (Lotus Notes, MS Exchange, Ventana)
- Consulting and System Integration:
 - Best practices, human resources, organizational development, performance metrics, methodology, framework, ontology (Delphi, E&Y, Arthur Andersen, AMS, KPMG)

Knowledge Management Perspectives:

- Process perspective (management and behavior): consulting practices, methodology, best practices, e-learning, culture/reward, existing IT → new information, old IT, new but manual process
- Information perspective (information and library sciences): content management, manual ontologies → new information, manual process
- Knowledge Computing perspective (text mining, artificial intelligence): automated knowledge extraction, thesauri, knowledge maps → new IT, new knowledge, automated process

Text Mining

Search

Engine

User

Modeling

Data Mining

Dataware Technologies

- (1) Identify the Business Problem
- (2) Prepare for Change
- (3) Create a KM Team
- (4) Perform the Knowledge Audit and Analysis
- (5) Define the Key Features of the Solution
- (6) Implement the Building Blocks for KM
- (7) Link Knowledge to People

Anderson Consulting

- (1) Acquire
- (2) Create
- (3) Synthesize
- (4) Share
- (5) Use to Achieve Organizational Goals
- (6) Environment Conducive to Knowledge Sharing

The Delphi Group

- (1) Key Concepts and Frameworks for Knowledge Management
- (2) How to Use Knowledge Management as a Competitive Tool
- (3) The Culture and Organization Aspects of Knowledge Management
- (4) Best Practices in Knowledge Management
- (5) The Technology of Knowledge Management
- (6) Market Analysis
- (7) Justifying Knowledge Management
- (8) Implementing Knowledge Management

Ernst & Young

- (1) Knowledge Generation
- (2) Knowledge Representation
- (3) Knowledge Codification
- (4) Knowledge Application

PriceWaterhouseCoopers

- (1) Find
- (2) Filter [for relevance]
- (3) Format [to problem]
- (4) Forward [to right people] and
- (5) Feedback [from users]

Artificial Intelligence

zona The University of Arizona The University of Arizona The University of Arizona The University

Reason for Adopting KM

Retain expertise of personnel

51.9%

Increase customer satisfaction

43.1%

Improve profits, grow revenues

37.5%

Support e-business initiatives

24.7%

Shorten product development cycles

23%

Provide project workspace

11.7%

Artificial Intelligence

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Business Uses Of KM Initiative

Capture and share best practices

77.7%

Provide training, corporate learning

62.4%

Manage customer relationships

58%

Deliver competitive intelligence

55.7%

Provide project workspace

31.4%

Manage legal, intellectual property

31.4%

Continue

Artificial Intelligence Lab

zona The University of Arizona The University of Arizona The University of Arizona The University

Business Uses Of KM Initiative

Enhance Web Publishing

29.9%

Enhance supply chain management

20.1%

Other

5.5%

Artificial Intelligence Lab

zona The University of Arizona The University of Arizona The University of Arizona The University

Leader Of KM Initiative

Artificial Intelligence L

zona The University of Arizona The University of Arizona The University of Arizona The Universit

Planned Length Of Project

Artificial Intelligence

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Implementation Challenges

Employees have no time for KM

41%

Current culture does not encourage sharing

36.6%

Lack of understanding of KM and Benefits

29.5%

Inability to measure financial benefits of KM

24.5%

Lack of Skill in KM techniques

22.7%

Organization's processes are not designed for KM

22.2%

Continue

Artificial Intelligence L

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Implementation Challenges

Lack of funding for KM

21.8%

Lack of incentives, rewards to share

19.9%

Have not yet begun implementing KM

18.7%

Lack of appropriate technology

17.4%

Lack of commitment from senior management

13.9%

No challenges encountered

4.3%

Types of Software Purchased

Messaging e-mail 44.7% Knowledge base, repository 40.7% Document management 39.2% Data warehousing 34.6% Groupware 33.1% Search engines 32.3%

Continue

Artificial Intelligence Lab

zona The University of Arizona The University of Arizona The University of Arizona The University

Types of Software Purchased

Web-based training

23.8%

Workflow

23.8%

Enterprise information portal

23.2%

Business rules management

11.6%

Spending On IT Services For KM

Software Budget Allotments

Enterprise information portal

35.6%

Document management

26.2%

Groupware

24.4%

Workflow

22.9%

Data warehousing

19.3%

Search engines

13.0%

Continue

Artificial Intelligence La

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Software Budget Allotments

Web-based training

11.4%

Messaging e-mail

10.8%

Other

29.2%

Knowledge Management Systems (KMS)

- Characteristics of KMS
- The Industry and the Market
- Major Vendors and Systems

Application Index

Applications

Text Indexes

"Workgroup"
Applications

Distributed Object Models

Network Services

Platform Services

KR Functions

Intranet and Extranet

Artificial Intelligence Lab

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Knowledge Retrieval Level (Source: GartnerGroup)

KR Functions

Concept "Yellow Pages"

Semantic

- Clustering —
 categorization "table
 of contents"
- Semantic Networks "index"
- Dictionaries
- Thesauri
- Linguistic analysis
- Data extraction

Retrieved Knowledge

- Collaborative filters
- Communities
- Trusted advisor
- Expert identification

Value "Recommendation"

Collaboration

Artificial Intelligence Lab

ona The University of Arizona The University of Arizona The University of Arizona The University

Knowledge Retrieval Vendor Direction (Source: GartnerGroup)

Newbies:

- grapeVINE
- Sovereign Hill
- CompassWare
- Intraspect
- KnowledgeX
- WiseWire
- Lycos
- Autonomy
- Perspecta

Technology Innovation

* Not yet marketed

Knowledge Retrieval Vendors

zona The University of Arizona The University of Arizona The University of Arizona The Universi

KM Software Vendors

rtificial Intelligence

From Federal Research to Commercial Start-ups

U. Mass: Sovereign Hill

 MIT Media Lab: Perspecta

Xerox PARC:

Batelle:

U. Waterloo:

Cambridge U.

U. Arizona:

InXight

ThemeMedia

OpenText

Autonomy

Knowledge Computing Corporation (KCC)

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Two Approaches to Codifying
Top-Down
Knowledge
Approach

- Structured
- Manual
- Humandriven

Bottom-Up Approach

UnstructuredSystem-aidedData/Infodriven

Knowledge Management Related Field: Search Engine

(Source: Jan Peterson and William Chang, Excite)

zona The University of Arizona The University of Arizona The University of Arizona The University

Basic Architectures: Search

ona The University of Arizona The University of Arizona The University of Arizona The University

Basic Architectures: Directory

zona The University of Arizona The University of Arizona The University of Arizona The University

Spidering

- Web HTML data
 - Hyperlinked
 - Directed, disconnected graph
 - Dynamic and static data
 - Estimated 800M indexible pages
- Freshness
 - How often are pages revisited?

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Indexing

- Size
 - from 50 to 150M urls
 - 50 to 100% indexing overhead
 - 200 to 400GB indices
- Representation
 - Fields, meta-tags and content
 - NLP: stemming?

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Search

- Augmented Vector-space
 - Ranked results with Boolean filtering
- Quality-based re-ranking
 - Based on hyperlink data
 - or user behavior
- Spam
 - Manipulation of content to improve placement

zona The University of Arizona The University of Arizona The University of Arizona The University

Queries

- Short expressions of information need
 - 2.3 words on average
 - Relevance overload is a key issue
 - Users typically only view top results
- Search is a high volume business
 - Yahoo! 50M queries/day
 - Excite 30M queries/day
 - Infoseek 15M queries/day

Alta Vista: within site search, machine translation

zona The University of Arizona The University of Arizona The University of Arizona The University

Directory

- Manual categorization and rating
 - Labor intensive
 - 20 to 50 editors
 - High quality, but low coverage
 - ◆200-500K urls
- Browsable ontology
- Open Directory is a distributed solution

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Yahoo: manual ontology (200 ontologists)

zona The University of Arizona The University of Arizona The University of Arizona The Universi

Business Model

- Advertising
 - Highly targeted, based on query
 - Keyword selling; Between \$3 to \$25 CPM
- Cost per query is critical
 - Between \$.5 and \$1.0 per thousand
- Distribution
 - Many portals outsource search

Web Resources

- Search Engine Watch
 - www.searchenginewatch.com
- "Analysis of a Very Large Alta Vista Query Log"; Silverstein et al.
 - www.research.digital.com/SRC
- "The Anatomy of a Large-Scale Hypertextual Web Search Engine"; Brin and Page
 - google.stanford.edu/long321.htm
- WWW conferences: www10.org

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Special Collections

- Newswire
- Newsgroups
 - Specialized services (Deja)
- Information extraction
 - Shopping catalog
 - Events; recipes, etc.

zona The University of Arizona The University of Arizona The University of Arizona The Universi

The Hidden Web

- Non-indexible content
 - Behind passwords, firewalls
 - Dynamic content
 - Often searchable through local interface
- Network of distributed search resources
 - How to access?
 - Ask Jeeves!

cona The University of Arizona The University of Arizona The University of Arizona The Universi

Spam

- Manipulation of content to affect ranking
 - Bogus meta tags
 - Hidden text
 - Jump pages tuned for each search engine
- Add Url is a spammer's tool
 - 99% of submissions are spam
- It's an arms race

ona The University of Arizona The University of Arizona The University of Arizona The University

The Role of NLP

- Many Search Engines do not stem
 - Precision bias suggests conservative term treatment
- What about non-English documents
 - N-grams are popular for Chinese
 - Language ID anyone?

ona The University of Arizona The University of Arizona The University of Arizona The University

Link Analysis

- Authors vote via links
 - Pages with higher inlink are higher quality
- Not all links are equal
 - Links from higher quality sites are better
 - Links in context are better
- Resistant to Spam
 - Only cross-site links considered

ona The University of Arizona The University of Arizona The University of Arizona The University

Page Rank (Page'98)

- Limiting distribution of a random walk
 - Jump to a random page with Prob. ε
 - Follow a link with Prob. 1- ε
- Probability of landing at a page D:
 - $\varepsilon/T + \Sigma P(C)/L(C)$
 - Sum over pages leading to D
 - ◆L(C) = number of links on page D

ona The University of Arizona The University of Arizona The University of Arizona The University

HITS (Kleinberg'98)

- Hubs: pages that point to many good pages
- Authorities: pages pointed to by many good pages
- Operates over a vincity graph
 - pages relevant to a query
- Refined by the IBM Clever group
 - further contextualization

zona The University of Arizona The University of Arizona The University of Arizona The University

Evaluation

- No industry standard benchmark
 - Evaluations are qualitative
 - Excessive claims abound
 - Press is not be discerning
- Shifting target
 - Indices change daily
 - Cross engine comparison elusive

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Who asks What?

- Query logs revisited
- Query-based indexing why index things people don't ask for?
- If they ask for A, give them B
- From atomic concepts to query extensions
- Structure of questions and answers
 - Shyam Kapur's chunks

zona The University of Arizona The University of Arizona The University of Arizona The University

Futures

- Vertical markets healthcare, real estate, jobs and resumes, etc.
- Localized search
- Search as embedded app
- Shopping 'bots
- Open Problems
- Has the bubble burst?

Acquisition of Communities

- Email, killer app of the internet
 - Mailing lists
- Usenet Newsgroups
- Bulletin boards
- Chat rooms
- Instant messaging
 - buddy lists, ICQ (I Seek You)

The New Networks

- A consumer revolution
 - The community makes the brand
 - Winning brands empower consumers, embrace the internet's viral efficiency
- Media is at the core of brand marketing
- From portals to networks
 - navigation, advertising, commerce

ona The University of Arizona The University of Arizona The University of Arizona The University

The New Networks

- Ingredients:
 - Search engine audience
 - Ad agency
 - Old media
 - Verticals
 - Bank
 - Venture capital
 - Access, technology, and services providers

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Keiretsu

- SoftBank
 - YAHOO!, Ziff-Davis, NASDAQ?
- Kleiner Perkins
 - AOL, Concentric, Sun, Netscape, Intuit, Excite
- Microsoft
 - MSN, MSNBC, NBC, CNET, Snap, Xoom, GE
- AT&T
 - TCI, AtHome, Excite

ona The University of Arizona The University of Arizona The University of Arizona The University

From SE to ePortal

- Spidering: Intranet and Internet crawling
- Integration: legacy systems and databases
- Content: aggregation and conversion
- Process: Collaboration, chat, workflow management, calendaring, and such
- Analysis: data and text mining, agent/alert

Knowledge Management Related Field: Data Mining

(Source: Michael Welge Automated Learning Group, NCSA)

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Why Data Mining? -- Potential Applications

- Database analysis, decision support, and automation
 - Market and Sales Analysis
 - Fraud Detection
 - Manufacturing Process Analysis
 - Risk Analysis and Management
 - Experimental Results Analysis
 - Scientific Data Analysis
 - Text Document Analysis

Artificial Intelligence Laboratoria The University of Arizona The Univ

- Database Systems, Data Warehouses, and OLAP
- Machine Learning
- Statistics
- Mathematical Programming
- Visualization
- High Performance Computing

Data Mining: On What Kind of Data?

- Relational Databases
- Data Warehouses
- Transactional Databases
- Advanced Database Systems
 - Object-Relational
 - Spatial
 - Temporal
 - Text
 - Heterogeneous, Legacy, and Distributed
 - WWW (web mining)

ona The University of Arizona The University of Arizona The University of Arizona The University

Data Mining: A KDD Process

An Overview of the Steps That Compose the KDD Process

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Required Effort for Each KDD Step

Predictive Modeling

- Classification
- Value prediction

Link Analysis

- Associations discovery
- Sequential pattern discovery
- Similar time sequence discovery

Database Segmentation

- Demographic clustering
- Neural clustering

Deviation Detection

- Visualization
- Statistics

Fraud and Inappropriate Practice Prevention

Business Objective:

The focus of this project was on the recent and steady 12% annual rise in *overrides*. The overall business objective of the project was to find a way to ensure that the *overrides* were appropriate without negatively affecting service provided by the SAs.

zona The University of Arizona The University of Arizona The University of Arizona The University

Fraud and Inappropriate Practice Prevention

Link Analysis (Rule Association)

Given a database, find all associations of the form:

IF < LHS > THEN <RHS >

Prevalence = frequency of the LHS and RHS occurring together

Predictability = fraction of the RHS out of all items with the LHS

e.g., Beer and diaper

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Rule Association - Basket Analysis

Data/Information Visualization

- Gain insight into the contents and complexity of the database being analyzed
- Vast amounts of under utilized data
- Time-critical decisions hampered
- Key information difficult to find
- Results presentation
- Reduced perceptual, interpretative, cognitive burden

ona The University of Arizona The University of Arizona The University of Arizona The University

Text Mining Visualization

ona The University of Arizona The University of Arizona The University of Arizona The University

Industrial Process Control

Pipeline Monitor

ona The University of Arizona The University of Arizona The University of Arizona The University

Scatter Visualizer

ona The University of Arizona The University of Arizona The University of Arizona The Universit

Decision Tree Visualizer

Requirements For Successful Data Mining

- There is a sponsor for the application.
- The business case for the application is clearly understood and measurable, and the objectives are likely to be achievable given the resources being applied.
- The application has a high likelihood of having a significant impact on the business.
- Business domain knowledge is available.
- Good quality, relevant data in sufficient quantities is available.

Artificial Intelligence Long The University of Arizona The University of Arizona The Requirements For Successful Data Mining

 The right people – business domain, data management, and data mining experts.
 People who have "been there and done that"

For a first time project the following criteria could be added:

- The scope of the application is limited. Try to show results within 3-6 months.
- The data source should be limited to those that are well known, relatively clean and freely accessible.

From Data Mining to Text Mining

- Techniques: linguistics analysis, clustering, unsupervised learning, case-based reasoning
- Ontologies: XML/RDF, content management
- P1000: A picture is worth 1000 words
- Formats/types: email, reports, web pages, etc.
- Integration: KMS and IT infrastructure
- Cultural: rewards and unintended consequences